
Lecture 6. The notion of a function of one variable. Limit function. Limit theorems for 

functions. The concept of continuity of functions. The points of discontinuity. 

A real-valued function of a real variable is a function that takes as input a real number, 

commonly represented by the variable x, for producing another real number, the value of the 

function, commonly denoted f(x). For simplicity, in this article a real-valued function of a real 

variable will be simply called a function. To avoid any ambiguity, the other types of functions 

that may occur will be explicitly specified. 

Some functions are defined for all real values of the variables (one says that they are everywhere 

defined), but some other functions are defined only if the value of the variable is taken in a 

subset X of ℝ, the domain of the function, which is always supposed to contain an open subset of 

ℝ. In other words, a real-valued function of a real variable is a function 

 

such that its domain X is a subset of ℝ that contains an open set. 

A simple example of a function in one variable could be: 

 

 

 

which is the square root of x. 

Image 

The image of a function  is the set of all values of f when the variable x runs in the whole 

domain of f. For a continuous (see below for a definition) real-valued function with a connected 

domain, the image is either an interval or a single value. In the latter case, the function is 

a constant function. 

The preimage of a given real number y is the set of the solutions of the equation y = f(x). 

Domain 

The domain of a function of several real variables is a subset of ℝ that is sometimes, but not 

always, explicitly defined. In fact, if one restricts the domain X of a function f to a subset Y ⊂ X, 

one gets formally a different function, the restriction of f to Y, which is denoted f|Y. In practice, it 

is often (but not always) not harmful to identify f and f|Y, and to omit the subscript |Y. 

Conversely, it is sometimes possible to enlarge naturally the domain of a given function, for 

example by continuity or by analytic continuation. This means that it is not worthy to explicitly 

define the domain of a function of a real variable. 

 

A function y = f (x) is a rule for determining y when we’re given a value of x. For 

example, the rule y = f (x) = 2x + 1 is a function. Any line y = mx + b is called a 

linear function. The graph of a function looks like a curve above (or below) the x-axis, 

where for any value of x the rule y = f (x) tells us how far to go above (or below) the 

x-axis to reach the curve. 

Functions can be defined in various ways: by an algebraic formula or several algebraic 

formulas, by a graph, or by an experimentally determined table of values.  
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Given a value of x, a function must give at most one value of y. Thus, vertical lines 

are not functions. For example, the line x = 1 has infinitely many values of y if x = 1. It is also 

true that if x is any number not 1 there is no y which corresponds to x, but that is 

not a problem—only multiple y values is a problem. 

In addition to lines, another familiar example of a function is the parabola y = f (x) =x
2
. We can 

draw the graph of this function by taking various values of x (say, at regular 

intervals) and plotting the points (x, f (x)) = (x, x
2
). Then connect the points with a 

smooth curve. The two examples y = f (x) = 2x + 1 and y = f (x) = x
2
 are both functions which 

can be evaluated at any value of x from negative infinity to positive infinity. For many 

functions, however, it only makes sense to take x in some interval or outside of some 

“forbidden” region. The interval of x-values at which we’re allowed to evaluate the function 

is called the domain of the function. 

For example, the square-root function y = f (x) =√x is the rule which says, given an 

x-value, take the nonnegative number whose square is x. This rule only makes sense if x 

is positive or zero. We say that the domain of this function is x ≥ 0, or more formally 

{x ∈ R | x ≥ 0}. Alternately, we can use interval notation, and write that the domain is 

[0, ∞). (In interval notation, square brackets mean that the endpoint is included, and a 

parenthesis means that the endpoint is not included.) The fact that the domain of y =√x is [0, ∞) 

means that in the graph of this function only above x-values on the right side of the x-axis. 

Another example of a function whose domain is not the entire x-axis is: y = f (x) = 

1/x, the reciprocal function. We cannot substitute x = 0 in this formula. The function 

makes sense, however, for any nonzero x, so we take the domain to be: {x ∈ R | x 6 = 0}. 

The graph of this function does not have any point (x, y) with x = 0. As x gets close to 

0 from either side, the graph goes off toward infinity. We call the vertical line x = 0 an 

asymptote. 

To summarize, two reasons why certain x-values are excluded from the domain of a 

function are that (i) we cannot divide by zero, and (ii) we cannot take the square root 

of a negative number. We will encounter some other ways in which functions might be 

undefined later. 

Another reason why the domain of a function might be restricted is that in a given 

situation the x-values outside of some range might have no practical meaning. For example, 

if y is the area of a square of side x, then we can write y = f (x) = x
2
. In a purely 

mathematical context the domain of the function y = x
2
 is all of R. But in the story-problem 

context of finding areas of squares, we restrict the domain to positive values of x, 

because a square with negative or zero side makes no sense. 

In a problem in pure mathematics, we usually take the domain to be all values of x 

at which the formulas can be evaluated. But in a story problem there might be further 

restrictions on the domain because only certain values of x are of interest or make practical 

sense. 

In a story problem, often letters different from x and y are used. For example, the 

volume V of a sphere is a function of the radius r, given by the formula V = f (r) =4/3πr
3
 

Also, letters different from f may be used. For example, if y is the velocity of something 

at time t, we may write y = v(t) with the letter v (instead of f ) standing for the velocity 

function (and t playing the role of x). 

The letter playing the role of x is called the independent variable, and the letter 

playing the role of y is called the dependent variable (because its value “depends on” 

the value of the independent variable).  

 

Limit function. 



The limit of a real-valued function of a real variable is as follows.
[1]

 Let a be a point 

in topological closure of the domain X of the function f. The function, f has a 

limit L when x tends toward a, denoted 

 

if the following condition is satisfied: For every positive real number ε > 0, there is a positive 

real number δ > 0 such that 

 

for all x in the domain such that 

 

If the limit exists, it is unique. If a is in the interior of the domain, the limit exists if and only if 

the function is continuous at a. In this case, we have 

 

When a is in the boundary of the domain of f, and if f has a limit at a, the latter formula allows to 

"extend by continuity" the domain of f to a. 

Limit theorems for functions. 

 

Theorem A. Suppose that f and g are functions such that f(x) = g(x) for all x in some open 

interval  containing a except possibly for a, then 

 
Theorem B. Suppose that f and g are functions such that the two limits 

 

exist, suppose that k is a constant and suppose that n is a positive integer. Then 

1.   

2.   

 

3.   

 

4.   

 

5.   

 

6.   
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7.   

 

8.   

 

9.   

 

10.   

 

11.  provided  when n is even.  

 

12. If  for all  then . 

13. If f is a polynomial then .  

 

14. If f is a rational function then, for all a in the domain of f, .  

 

Theorem C. The limit 

 

if and only if the right-hand limits and left-hand limits exist and are equal to M: 

 
Theorem D. (Squeeze Theorem) Suppose that f, g and h are three functions such 

that f(x) < g(x) < h(x) for all x. If 

 

then 

 
Theorem E. Suppose that f and g are two functions such that 

 and  

then the limit 

 

does not exist. 



 

The concept of continuity of functions. 

For defining the continuity, it is useful to consider the distance function of ℝ, which is an 

everywhere defined function of 2 real variables:  

A function f is continuous at a point  which is interior to its domain, if, for every positive real 

number ε, there is a positive real number φsuch that  for all  such 

that  In other words, φ may be chosen small enough for having the image by f of 

the interval of radius φ centered at  contained in the interval of length 2ε centered at  A 

function is continuous if it is continuous at every point of its domain. 

 

The points of discontinuity. 
A function that is continuousis a function whose graph has no breaks in it; i.e. it is a continuous 

curve. Generally speaking, a function is continuous if you can draw its graph without 

picking up your pencil. Notice, on the graph of y = sin(x), that the function is completely 

connected at all points. Many functions, however, will have isolated points where they are not 

connected. These problem points are called discontinuities. 

Point discontinuities are also called removable discontinuities orremovable singularities. 

Sometimes we come across functions that are defined differently for a certain point. Consider the 

function . We defined the value of the function to be 1 

at the point x = 3, yet, the rest of the function is dictated by . We can see in the graph 

that the function is continuous except for the tiny hole in the curve at x = 1. It is discontinuous at 

a single point, and this discontinuity is called a point discontinuity. 

In general, point discontinuities occur when a function is defined specifically for an isolated 

x-value. However, this does not guarantee a point discontinuity. For example, if we change our 

function slightly to  it becomes continuous. This is 

because we have defined the value of the function at f(3) precisely to be the value of the 

function  at x = 3. In this case, we did not define the value at = 3 to be different from 

what it would be if the function were . Then there is no discontinuity. Compared to our 

last function with a point discontinuity, we moved the point back up to the function to "plug" up 

the hole, and it is now continuous. Always remember, if a function is defined like this, to check 

if the isolated point is a point discontinuity or just a trick. 

Point Discontinuities also arise when our function has a denominator that can be equal to zero, 

but that part of the denominator can also be cancelled out with a like term in the numerator. 

Consider the function . If we try to find the value of the function at x = 2, we 

end up getting . 0/0 represents an undefined number - i.e. the function does 

not exist at that point. However, if we restrict the function to a domain that does not include x = 

2, we can simply cancel out the and be left with . This leaves us to define the 
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function as . We have effectively removed the 

discontinuity to show that the function behaves exactly like , except at x = 2, where it is 

undefined. 

In conclusion, point discontinuities also occur when we can cancel a term in the 

denominator and the numerator. They occur at the values for which the cancelled term is 

equal to zero. In our example, we removed x - 2, and x - 2 = 0 at x = 2. If we were to remove 

sin(x), we would have point discontinuities at integer multiples of π, since sin(π) = sin(2π) = 

sin(3π) = sin(nπ) = 0 for any integer n. 

 


